Scientific journal
Scientific Review. Technical science
ISSN 2500-0799
ПИ №ФС77-57440

OPTIMIZATION OF REDISTRIBUTION OF STREAMS ON MAIN GAS PIPELINES

Ilichev V.Yu. 1 Yurik E.A. 1 Antipov V.S. 1
1 Kaluga Branch of Bauman Moscow State Technical University
1032 KB
Article is devoted to the review modern, most front lines, methods of optimization of redistribution of flows of the extracted natural gas among gas points and on branches of the gas transmission system. The principles of the organization and the main components of new systems of computer simulation of functioning of the equipment of gas-distributing stations and trunk pipelines are considered. The carried-out analysis allowed to offer the directions of improvement of process of optimization for the purpose of obtaining the most reliable results. It is noted that this work has relevance, and the selected direction of scientific research has the potential for further development as the generalized technique used at redistribution of gas flows allow to achieve high-quality increase in technical and economic indicators of the enterprises and organizations of the fuel and energy complex (FEC) of Russia, and finally minimization of cost of natural gas for the end user. Increase in uninterrupted operation of providing the enterprises and private consumers with natural gas and also improvement of processes of production and improvement of quality of life of the population is also important consequence of application of new mathematical methods with use of modern computer capacities. Application of the developed technique helps to solve the tasks set by the leaders of our state within the program of social and economic development. When summing up the carried-out work and by results of the analysis of references measures of further improvement of the organization of gas transmission network and decrease in losses of natural gas when transporting are proposed.
natural gas
fuel and energy complex
trunk pipelines
computer simulation
linear programming

Данная статья посвящена проблеме, имеющей высокую значимость в настоящее время – разработке технически и экономически обоснованной методики перераспределения потоков газа на трубопроводах газотранспортных систем. Эта методика будет полезной для применения как при эксплуатации чрезвычайно разветвлённой системы газопроводов России, так и при проектировании и закладке строительства новых веток трубопроводов. Разработанная методика является обобщённой и учитывает основные действующие факторы. Эта обобщённая методика сможет помочь разработать более детальные математические модели функционирования газотранспортных систем, с минимальным количеством допущений и упрощений. Данная методика с некоторой переработкой может стать полезной также при проектировании и эксплуатации нефтепроводов и иных трубопроводных сетей.

Цель исследования: совершенствование методики проектирования магистральных газопроводов с целью повышения их технико-экономических показателей, а также снижение затрат при добыче и транспортировке природного газа.

Материалы и методы исследования

При разработке методики необходимо произвести математическое моделирование [1], заключающееся в оптимизации управления транспортированием продуктов по трубопроводам при нормальной эксплуатации, при реконструкциях и аварийных ситуациях (экстремальная задача линейного программирования). Взаимосвязь между элементами проектируемой системы целесообразно осуществлять с помощью формирования систем равенств и неравенств, содержащих основные эксплуатационные параметры оборудования и граничные условия (ограничения) для каждого элемента транспортной системы. Обобщённые технико-экономические характеристики каждого узла газотранспортной системы также описываются в виде систем равенств и неравенств.

Целевой оптимизируемой функцией задачи линейного программирования (объектом оптимизации) будут являться экономические показатели, характеризующие рассматриваемую часть газодобывающей и газотранспортной системы в целом. Наиболее целесообразно и удобно в качестве такого показателя принять себестоимость газа для заказчика (продавца природного газа).

Для формирования исходных данных для задачи оптимизации необходимо определить основные составляющие себестоимости газа в пределах затрат на добычу и на транспортировку. Принято производить расчёт себестоимости добычи и транспортировки 1000 куб. м газа.

Согласно [2, 3] себестоимость добычи газа складывается из следующих основных составляющих:

а) затраты при добыче и промысловой подготовке газа, зависящие от используемых технологий и организации процессов (в том числе затраты топлива и электроэнергии);

б) затраты на подготовку, освоение и совершенствование производственных процессов;

в) затраты при эксплуатации очистных сооружений;

г) дополнительные затраты, связанные с осуществлением работ вахтовым методом;

д) отчисления на воспроизводство минерально-сырьевой базы;

е) затраты по обеспечению нормируемых условий труда и техники безопасности;

ж) затраты на управление производством;

з) затраты, связанные с подготовкой и переподготовкой кадров;

и) платежи банкам по кредитам и т.п.;

к) отчисления в отраслевые, внебюджетные фонды;

л) затраты на содержание производственных и вспомогательных помещений;

м) отчисления на социальные нужны, налоги, сборы, платежи и другие обязательные отчисления.

Среди рассмотренных затрат крупной газодобывающей компании сильно зависят от её месторасположения лишь пункты а)–г), поэтому при разработке методики перераспределения потоков газа в первом приближении остальные пункты затрат можно считать постоянными на 1000 куб. м добытого газа.

Согласно [4], себестоимость транспортировки газа складывается из затрат на техническое обслуживание и ремонт магистральных и вспомогательных газопроводов, а также оборудования, с помощью которого осуществляется транспорт, очистка газа и т.п.

Расход перекачиваемого газа можно рассчитать следующим образом:

G = Gconst – Gsn – Gpot,

где Gconst – расчётный расход поступающего в трубопроводы газа;

Gsn – расход газа на собственные нужны транспортной сети;

Gpot – потери газа при транспортировке.

Cебестоимость транспортировки газа складывается из тех же составляющих, что и себестоимость добычи, кроме пунктов а)–г), остальные пункты можно также считать в первом приближении постоянными на 1000 куб. м транспортируемого газа. К остальным пунктам добавляются:

– стоимость химических добавок;

– затраты на транспорт газа;

– неизбежные потери расхода при хранении и транспорте газа, расход на собственные нужды.

При расчёте потерь газа при транспортировке необходимо учитывать утечки газа из хранилищ и из трубопроводов.

При расчёте расхода газа на собственные нужды учитывается потребление газа газовыми турбинами и прочим энергетическим оборудованием, котельными, химическими лабораториями, механическими мастерскими и другими подразделениями.

К собственным нуждам также относится расход газа, стравливаемого при пусках и остановках компрессорных агрегатов, при заправке метанола в газопроводы, при продувке пылеуловителей, сепараторов и конденсатоотводчиков, расходуемый на продувку трубопроводов для освобождения его от конденсата, воды, грязи и т.п.

Таким образом, можно обобщить, что себестоимость добычи и транспортировки газа состоит из совокупности постоянных затрат, на которые влиять практически невозможно, и переменной части затрат, которая зависит главным образом от месторасположения пунктов добычи газа, конструкции и протяжённости трубопроводных систем и режимов работы газоперекачивающего и прочего оборудования (собственно транспортные затраты).

Для проведения расчётов по стоимости транспортировки газа по различным участкам сети вначале необходимо построить топологическую схему рассматриваемой сети. В настоящее время такие построения производятся с помощью так называемых компьютерных симуляторов [1].

Компьютерный симулятор состоит из трёх взаимосвязанных систем. Первой системой является интерактивный интерфейс для воспроизведения на компьютере реальной системы газопроводов, с учетом их диаметров, материалов, топологии прокладки, состава и месторасположения компрессорных станций, вентилей, регулирующих клапанов и т.д.

Как и в любой системе обработки информации, в компьютерном симуляторе присутствует база данных, состоящая из структурированной информации, полученной из первой системы (интерактивного интерфейса) и динамически изменяющейся информации по текущему расчёту перераспределения загрузки оборудования, расходов газа по веткам газотранспортной сети и т.д.

Двумя рассмотренными системами компьютерного симулятора управляет программно-расчётный комплекс, реализующий метод решения экстремальной задачи линейного программирования.

Таким образом, для проведения анализа работы реальной системы магистральных трубопроводов и компрессорных станций, с помощью визуальных редакторов топологии задаются паспортные характеристики и режимные параметры элементов исследуемой системы: турбоприводов, нагнетателей, данные об условиях транспортирования природного газа, о техническом состоянии оборудования и т.д. Параметры оборудования задаются исходя из проектной и технической документации, результатов испытаний.

Пример интерфейса компьютерного симулятора AMADEUS, работающего в многопользовательском режиме, приведён на рис. 1. Этот симулятор использовался для управления трубопроводной сетью Международной газотранспортной компании «SPP» [5].

ilic1.tif

Рис. 1. Интерфейс компьютерного симулятора AMADEUS

Оптимизация транспортирования газа через трубопроводную сеть газотранспортного предприятия осуществляется путём использования газодинамического симулятора для построения и решения задачи оптимизации путём численного анализа параметров и режимов работы магистральных газопроводов и станций компримирования газа.

Ядро компьютерного симулятора создано путём формализации математических моделей механики и газодинамики для описания процессов, происходящих в трубопроводах и прочем газотранспортном оборудовании при эксплуатации в паспортном режиме, испытаниях и при проведении модернизации. Конкретнее используются следующие хорошо отработанные физико-математические модели: система уравнений механики жидкостей и газов, система уравнений равновесия деформируемого твердого тела. Так как системы уравнений, описывающих данные процессы, являются очень громоздкими и сложными для вычисления, для решения задачи нахождения оптимума приходится вводить необходимые упрощения и допущения. Глубина упрощений ещё больше увеличивается в случае, если необходимо исследовать модель функционирования системы транспорта газа в динамике, тем более при необходимости обеспечения режима работы компьютерного симулятора в реальном времени.

Оптимизация, производимая симулятором, заключается в подборе параметров работы оборудования и загрузки газотраспортных веток с целью достижения максимума или минимума заданного параметра оптимизации (чаще всего, это минимум себестоимости транспортировки газа от начального пункта в конечный, рассчитанная только по стоимости потребляемой оборудованием энергии).

Результаты оптимизации параметров работы оборудования и загрузки магистральных трубопроводов отображаются графически на составленном при задании исходных данных изображении расчетной схемы (мнемосхемы) с помощью гистограмм, эпюр, текста и т.п.

Также можно вывести на экран результаты расчёта стоимости транспортировки газа до и после оптимизации (рис. 2).

ilic2.tif

Рис. 2. Результаты оптимизации системы транспортировки газа

К сожалению, используемые в настоящее время симуляторы при оптимизации не учитывают иных затрат, кроме затрат на энергию и поэтому требуют дальнейшего совершенствования. Для этого в структуру учитываемых факторов необходимо включить дополнительные затраты, указанные выше в данной статье. Это потребует увеличения вычислительной мощности компьютеров либо проведения вычислений в течение довольно длительного времени, но результаты расчётов преобретут гораздо большую достоверность.

Результаты исследования и их обсуждение

Преимущество рассмотренной методики с учётом её доработки состоит в том, что она на протяжении всего жизненного цикла оборудования магистральных трубопроводов (при проектировании, эксплуатации и реконструкции) позволит более точно корректировать перераспределение потоков газа, а также состав и загрузку оборудования.

Для внедрения в процесс расчёта и оптимизации магистральных трубопроводов предложенной методики необходимы будут дополнительные расходы. Потребуется разработка нового, более совершенного, программного обеспечения, существенное повышение мощности используемой компьютерной техники, на обучение инженеров-проектировщиков и техников применению компьютерных симуляторов и т.д.

Предложенный метод проектирования позволит повысить глубину оптимизации за счёт учёта описанных выше дополнительных статей затрат и уменьшения количества допущений, поэтому затраты на внедрение новых методик, безусловно, окупятся.

Окупаемость метода достигается за счет повышения безопасности эксплуатации и большего срока службы газотранспортных систем, а также сокращения затрат на строительство и эксплуатацию трубопроводных веток [6].

Для снижения расхода газа на собственные нужды (и тем самым минимизации материальных затрат) можно порекомендовать безусловное внедрение рационализаторских предложений и технических усовершенствований. Уменьшение расхода газа на собственные нужды и потери также позволяет обеспечить бесперебойный режим обеспечения газом потребителей, из-за чего эффективность работы газотранспортной сети существенно повышается. Это является одним из путей решения народнохозяйственных задач, сформулированных Правительством РФ.

Одновременно необходимо стремиться к постоянному сокращению потерь природного газа за счет внедрения следующих мероприятий:

– своевременное проведение ремонтов и технического обслуживания агрегатов и оборудования с целью улучшения их характеристик, в частности КПД;

– эксплуатация скважин добычи, газоперекачивающего оборудования и газопроводов без сброса газа в атмосферу.

Заключение

Таким образом, цель данной работы выполнена – произведён обзор и анализ наиболее современных методов оптимизации перераспределения потоков природного газа по участкам транспортной системы. Выработан ряд рекомендаций по дальнейшему совершенствованию и отработке данных методов на практике. Также даны рекомендации по уменьшению потерь природного газа при добыче и транспортировке.